

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0127 of 13 March 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Bonded fastener for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 3

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-17/0127 issued on 20 February 2017

European Technical Assessment ETA-17/0127 English translation prepared by DIBt

original issued document and shall be identified as such.

Page 2 of 31 | 13 March 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0127

Page 3 of 31 | 13 March 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete" is a bonded anchor consisting of a cartridge with injection mortar WIT-UH 300 / WIT-VH 300 / WIT-VM 300 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load	See Annex				
(static and quasi-static loading)	C 1, C 2, C 4, C 6				
Characteristic resistance to shear load	See Annex				
(static and quasi-static loading)	C 1, C 3, C 5, C 7				
Displacements	See Annex				
(static and quasi-static loading)	C 8 to C 10				
Characteristic resistance for seismic performance	See Annex				
category C1	C 11 to C 14				
Characteristic resistance and displacements for seismic	See Annex				
performance category C2	C 11, C 12, C 15, C 16				

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0127

Page 4 of 31 | 13 March 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

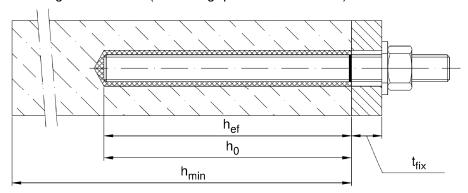
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

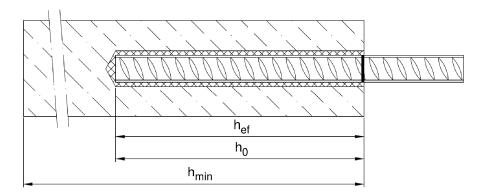
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

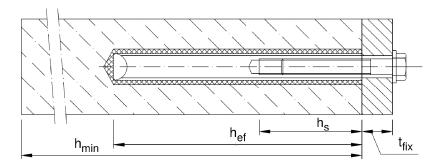
Issued in Berlin on 13 March 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

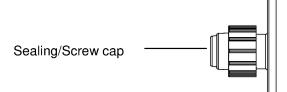
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

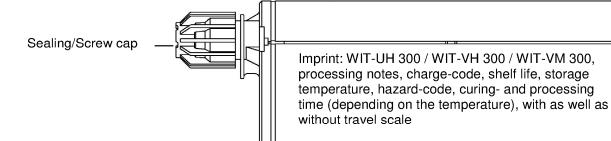
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

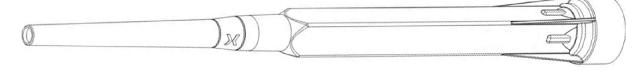
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Product description Installed condition	Annex A 1


Cartridge: WIT-UH 300 / WIT-VH 300 / WIT-VM 300

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

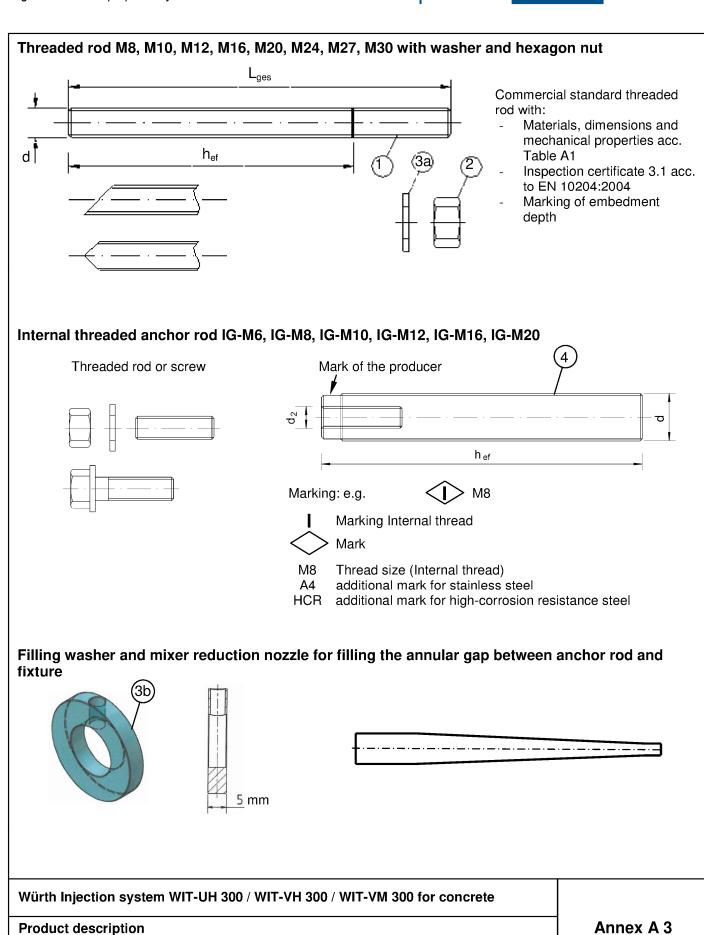


Imprint: WIT-UH 300 / WIT-VH 300 / WIT-VM 300, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Static Mixer WIT-UH

Piston plug and mixer extension


Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

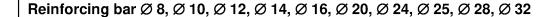
Product description

Injection system

Annex A 2

Z15680.19 8.06.01-50/19

Threaded rod, internal threaded rod and filling washer


Steel, zinc plated (Steel acc. to EN 10087:1998 or EN 10263:2001) - zinc plated ≥ 5 μm acc. to EN ISO 4042:1999 or - hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or - sherardized ≥ 45 μm acc. to EN ISO 17668:2016									
Property class	<u> </u>	Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
		f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%					
1 Anchor rod		$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%					
acc. to EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%					
21100 000 1.2010	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%					
	8.8	f _{uk} = 800 N/mm ²	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾					
acc. to	4	for anchor rod clas		•					
2 Hexagon nut	5	for anchor rod clas							
	8	for anchor rod clas							
3a Washer Steel, zinc plated, hot-di (e.g.: EN ISO 887:2006,				N ISO 7094:2000)					
3b Filling washer Steel, zinc plated, hot-di	p galva								
Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
anchor rod acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%					
EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%					
Stainless steel A2 (Material 1.4301 / 1.4303 / 1.4307 / 1.45 Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.43 High corrosion resistance steel (Material 1.4529 or 1.456)	362 or 1	.4578, acc. to EN	10088-1:2014)						
Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
1 Anchor rod ¹⁾⁴⁾		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾					
acc. to EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾					
	80	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 600 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾					
acc. to	50								
2 Hexagon nut 1)4) EN ISO 3506-1:2009	70	for anchor rod class 70							
A2: Material 1.4301 / 1.4		for anchor rod clas		10000 1:0014					
3a Washer A2: Material 1.4301 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	1404 / 1 r 1.456	1.4571 / 1.4362 or 1 5, acc. to EN 10088	.4578, acc. to EN 3-1: 2014	10088-1:2014					
3b Filling washer Stainless steel A4, High	corros								
Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
Internal threaded acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ > 8%					
4 anchor rod ¹⁾²⁾ EN ISO 3506-1:2009	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%					


¹⁾ Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16,

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

for IG-M20 only property class 50 $^{3)}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists $^{4)}$ Property class 80 only for stainless steel A4

- Minimum value of related rip area f_{R.min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part Designation		Material				
Reinf	orcing bars					
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$				

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Product descriptionMaterials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Intended Use
Specifications

Annex B 1

Table B1: Installation parameters for threaded rod											
Anchor size				M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of element	ļ	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmen	Fff - Air		[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерті	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

Tor application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.
An aximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	12	14	16	18	20	25	32	32	35	40
Effective embedment death	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max}		160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} +	- 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

Table B3: Installation parameters for Internal threaded rod

Anchor size			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	· 2d ₀	
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools $\mathbf{d}_{\mathrm{b,min}}$ Internal \mathbf{d}_0 **Threaded** \mathbf{d}_{b} Piston Installation direction and use Rebar threaded min. Drill bit - Ø Rod plug of piston plug Brush - Ø rod HD, HDB, CA Brush - Ø WIT-[mm] WIT-[mm] [mm] [mm] [mm] [mm] 10,5 M8 10 RB10 11,5 M10 8 IG-M6 12 RB12 13,5 12,5 No plug required IG-M8 M12 10 14 RB14 15,5 14,5 12 16 RB16 17,5 16,5 M16 14 IG-M10 18 RB18 20,0 18,5 VS18 16 20 RB20 VS20 22,0 20,5 M20 IG-M12 22 RB22 22,5 VS22 24,0 20 25 RB25 27,0 25,5 VS25 h_{ef} > h_{ef} > M24 IG-M16 RB28 30,0 VS28 28 28,5 all 250 mm 250 mm 30,5 M27 30 RB30 **VS30** 31,8 24 / 25 32 RB32 32,5 VS32 34,0 M30 28 IG-M20 35 RB35 37,0 35,5 **VS35**

MAC - Hand pump (volume 750 ml) Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 d_s

Only in non-cracked concrete

VS40

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

40,5

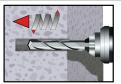
HDB - Hollow drill bit system

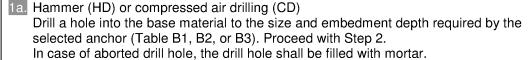
Drill bit diameter (d₀): all diameters

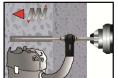
The hollow drill bit system contains the Würth Extraction Drill Bit, MKT Extraction Drill Bit or Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 230 hPa and flow rate of minimum 61 l/s.

40

RB40

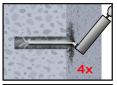

43,5


Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use	Annex B 3
Cleaning and setting tools	

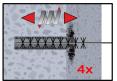


Installation instructions

Drilling of the bore hole

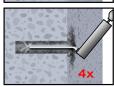

1b. Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

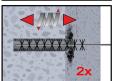
MAC: Cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

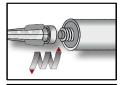
CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

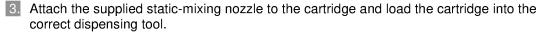
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.
 If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

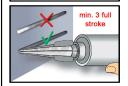
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

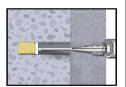

Intended Use
Installation instructions

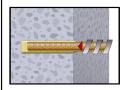
Annex B 4

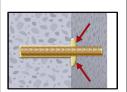
Installation instructions (continuation)

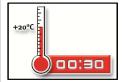


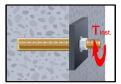
For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm


8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complety filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optioned filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Ma	aximum w	orking time and minim	num curing time			
Concrete temperature			Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete		
- 5 °C	- 5 °C to - 1 °C		50 min	5 h	10 h		
0 °C	0 °C to + 4 °C		25 min	3,5 h	7 h		
+ 5 °C	+ 5 °C to + 9 °C		15 min	2 h	4 h		
+ 10 °C	+ 10 °C to + 14 °C		10 min	1 h	2 h		
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min		
+ 20 °C to + 29 °C		+ 29 °C	3 min	30 min	60 min		
+ 30 °C to + 40 °C		+ 40 °C	2 min	60 min			
Cartridge temperature			+5°C to +40°C				

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Curing time	Annex B 6

Siz	ze			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561		
Ch	naracteristic tension resistance, Steel failu		<u> </u>			,							
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224		
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280		
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449		
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281		
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-		
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-		
Ch	aracteristic tension resistance, Partial fac	tor ²⁾											
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)					
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5					
Sta	ainless steel A2, A4 and HCR, class 50	γMs,N	[-]	2,86									
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87									
	ainless steel A4 and HCR, class 80	γMs,N	[-]	1,6									
Ch	paracteristic shear resistance, Steel failure				1								
п	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135		
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	9 (8)	15 (13)	21	39	61	88	115	140		
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224		
out	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140		
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	-	-		
^	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-		
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900		
arm	Steel, Property class 5.6 and 5.8	М ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123		
/er a	Steel, Property class 8.8	М ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797		
Vith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Bk.s}	[Nm]	19	37	66	167	325	561	832	1125		
Wit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-		
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-		
Cr	aracteristic shear resistance, Partial facto												
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7					
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5					
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8					
_	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6					
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3					

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
2) in absence of national regulation

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Anchor	size thread	ded ro	d			M 8	M 10	M 12	M 16	M 20	M24	M27	M30		
Steel fa	ilure														
Charact	teristic tensio	on resi	stance	$N_{Rk,s}$	[kN]	A _s ⋅ f _{uk} (or see Table C1)									
Partial f	actor			γ _{Ms,N}	[-]	see Table C1									
Combin	ned pull-out	and o	concrete failure												
Charact	teristic bond	resist	ance in non-crac	ked concrete	C20/25										
ture	I: 80°C/50°	С	Dry, wet	τ _{Rk,ucr}	[N/mm²]	17	17	16	15	14	13	13	13		
npera range	II: 120°C/72	2°C	concrete and flooded bore	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11		
Ten	III: 160°C/1	00°C	hole	τ _{Rk,ucr}	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0		
Charact	teristic bond	resist	ance in cracked	concrete C20/	/25										
ature	I: 80°C/50°	С	Dry, wet	τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0		
npera rang	II: 120°C/72	2°C	concrete and flooded bore	τ _{Rk,cr}	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0		
Ter	III: 160°C/1	00°C	hole	τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5		
				C25/30						02					
	Increasing factors for concrete			C30/37						04					
Increasing factors for concrete		C35/45					07								
Ψc	Ψ_{C}		C40/50					08							
				C45/55 C50/60	1,09 1,10										
Concre	te cone fail	ure		030/00					١,	10					
	acked concre			k _{ucr,N}	[-]				11	1,0					
Cracked	d concrete			k _{cr,N}	[-]					, 7					
Edge di	stance			c _{cr,N}	[mm]				1,5	h _{ef}					
				s _{cr,N}	[mm]					cr,N					
Splittin	a			01,14	,					01,11					
	<u> </u>	h/h _{ef}	≥ 2,0						1,0	h _{ef}					
Character Character Uncreasing Value Concrete Non-cracter Cracked Edge disterior Axial disterior Axial disterior Installation Installatio	stance	2,0 >	h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$									
		h/h _{ef}	≤ 1,3						2,4	h _{ef}					
Axial di	stance	•		s _{cr,sp}	[mm]				2 c	cr,sp					
Installa	tion factor														
			MAC					1,2			١	NPA			
for dry a	and wet cond	crete	CAC		r 1	1,0									
			HDB	γ _{inst}	[-]				1	,2					
for floor	ded bore hol	e	CAC						1	,4					

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 2

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm		•		•		•	•			•	
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ Rk,s	[kN]			0,6 •	A _s · f _{uk}	(or see	Table C	1)		
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙f _{uk}	(or see	Table C	1)		
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ∙ f _{uk}	(or see	Table C	71)		
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874	
Partial factor	γMs,V	[-]				see	Table C	1			
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300r)$								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γ _{inst}	[-]					1,0				

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 3

Table C4: Cha	racter	istic values	of ten	sion loa	ds und	er stati	c and q	uasi-sta	atic acti	on		
Anchor size internal	threade	d anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure1)												
Characteristic tension	resistan	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class		8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength	class 5.8	8 and 8.8	γ _{Ms,N}	[-]			1	,5				
	Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 2)				14	26	41	59	110	124		
Partial factor			γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out ar	nd conc	rete cone failu	re									
Characteristic bond res	sistance	in non-cracked	concrete	C20/25								
1: 80°C/50°C		Dry, wet	τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13		
III: 160°C/100°C	;	concrete and flooded bore	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11		
년 III: 160°C/100	°C	hole	τ _{Rk,ucr}	[N/mm ²]	11	11	10	9,5	9,0	9,0		
Characteristic bond res	sistance	in cracked con	crete C20)/25								
e I: 80°C/50°C		Dry, wet	τ _{Rk,cr}	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
III: 160°C/100°C	;	concrete and flooded bore	τ _{Rk,cr}	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0		
년 III: 160°C/100	°C	hole	τ _{Rk,cr}	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5		
				25/30				02				
			C30/37					04				
Increasing factors for o	concrete			35/45 10/50	1,07 1,08							
Ψ_{C}				15/55	1,09							
			-	50/60	1,10							
Concrete cone failure			1				·					
Non-cracked concrete			k _{ucr,N}	[-]			11	1,0				
Cracked concrete			k _{cr,N}	[-]			7	,7				
Edge distance			c _{cr,N}	[mm]			1,5	h _{ef}				
Axial distance			s _{cr,N}	[mm]			2 c	cr,N				
Splitting failure				'								
	h/h _{ef}	≥ 2,0					1,0	h _{ef}				
Edge distance	2,0 >	$h/h_{ef} > 1,3$	c _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$\frac{h}{h_{ef}}$				
	h/h _{ef}	≤ 1,3			2,4 h _{ef}							
Axial distance	xial distance			[mm]		2 c _{cr,sp}						
Installation factor			s _{cr,sp}									
		MAC	_			1,2			NPA			
for dry and wet concre	te	CAC	γ _{inst}	[-]	1,0							
		HDB		"			1	,2				
for flooded bore hole		CAC					-	,4				

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

tic val	ues of s	hear	loads u	nder s	tatic an	d quas	i-static	action		
ed anch	or rods	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
)										
5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61		
8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98		
Partial factor, strength class 5.8 and 8.8		[-]				1,25				
	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40		
	γ _{Ms,V}	[-]	1,56 2,38							
	k ₇	[-]	1,0							
5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519		
and 8.8	γ _{Ms,V}	[-]	1,25							
	M ⁰ Rk,s	[Nm]	11	26	52	92	233	456		
	γ _{Ms,V}	[-]			1,56			2,38		
	k ₈	[-]				2,0				
	γinst	[-]				1,0				
	•	•	•							
	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef}							
	d _{nom}	[mm]	10	12	16	20	24	30		
	γinst	[-]		•	•	1,0				
	5.8 8.8 and 8.8	Section Sec	S.8	Section Sect	IG-M 6 IG-M 8 I	IG-M 6 IG-M 8 IG-M 10 IG-M 10 IG-M 8 IG-M 10 IG	IG-M 6 IG-M 8 IG-M 10 IG-M 12	5.8 V ⁰ _{Rk,s} [kN] 5 9 15 21 38 8.8 V ⁰ _{Rk,s} [kN] 8 14 23 34 60 and 8.8 Y _{Ms,V} [-] 1,25 V ⁰ _{Rk,s} [kN] 7 13 20 30 55 Y _{Ms,V} [-] 1,56 k ₇ [-] 1,0 5.8 M ⁰ _{Rk,s} [Nm] 8 19 37 66 167 8.8 M ⁰ _{Rk,s} [Nm] 12 30 60 105 267 and 8.8 Y _{Ms,V} [-] 1,25 M ⁰ _{Rk,s} [Nm] 11 26 52 92 233 Y _{Ms,V} [-] 1,56 k ₈ [-] 2,0 Y _{inst} [-] 1,0		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

Ancho	r size reinfo	orcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel fa																	
Charac	teristic tensi	on resi	stance	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)						
Cross	section area			A _s	[mm²]	50	79	113	154	201	314	452	491	616	804		
Partial	factor			γ _{Ms,N}	[-]	1,4 ²⁾											
			oncrete fail														
	teristic bond	crete C20/2	25			1		I		ı	I						
ature e	I: 80°C/50°	C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13		
Temperature range	II: 120°C/7	2°C	and flooded	^τ Rk,ucr	[N/mm²]	13	12	12	12	12	11	11	11	11	11		
Ten	III: 160°C/1	00°C	bore hole	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5		
Charac	teristic bond	l resista	ance in crack	ed concrete	C20/25												
ture		Dry, wet	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0			
Temperature range	II: 120°C/7	2°C	and	τ _{Rk,cr}	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0		
Ten	III: 160°C/1	00°C	flooded bore hole	[⊤] Rk,cr	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0		
					5/30					1,	02						
					0/37						04						
	sing factors f	or cond	crete		5/45						07						
Ψ_{C}				C40/50							80						
					C45/55			1,09 1,10									
Concre	ete cone fai	lura		U50	0/60					1,	10						
	acked concr			k _{ucr,N}	[-]					11	1,0						
Cracke	ed concrete			k _{cr,N}	[-]						, 7						
Edge d	listance			c _{cr,N}	[mm]					1,5	h _{ef}						
Axial di	istance			s _{cr,N}	[mm]					2 c	cr.N						
Splittir	ng			,													
		h/h _{ef} à	≥ 2,0							1,0	h _{ef}						
Edge d	listance	2,0 >	h/h _{ef} > 1,3	c _{cr,sp}	[mm]				2 · h	ef (2,	,5 – -	$\frac{h}{n_{\text{ef}}}$					
		h/h _{ef} :	≤ 1,3							2,4	h _{ef}						
Axial d	istance			s _{cr,sp}	[mm]					2 c	cr,sp						
Installa	ation factor										•						
			MAC					1,2					NPA				
for dry	and wet con	crete	CAC	γ_{inst}	[-]						,0						
			HDB	'	[[,2						
tor floo	r flooded bore hole CAC			ions of reinforcing bars			1,4										

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 6

Table C7: Characteristic	values of	shear I	oads	und	er st	atic	and	quas	si-sta	atic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•	•	•	•					
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,52)									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm	·											
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure	•	<u>.</u>	•									
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure	-											
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$						mm)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 3						32			
Installation factor	γinst	[-]		•				1,0				

 $[\]stackrel{1)}{\text{s}}$ f_{uk} shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 7

Table C8: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded re	od		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked concrete C20/25 under static and quasi-static action										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-stat	ic action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \tau;$

τ: action bond stress for tension

Table C9: Displacements under shear load²⁾ (threaded rod)

Anchor size thread	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 8

 $[\]delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

Table C10: Displacements under tension load ¹⁾ (Internal threaded rod)										
Anchor size Internal thre	eaded rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Non-cracked concrete C20/25 under static and quasi-static action										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060		
Temperature range II:	$\delta_{ m N0}$ -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179		
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184		
Cracked concrete C20/2	5 under static	and quasi-static	action							
Temperature range I:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137		
Temperature range II:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412		
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor τ ; τ: action bond stress for tension

Table C11: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inte	rnal threaded rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

²⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

V: action shear load

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 9

8.06.01-50/19 Z15680.19

Table C12: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	C20/25 und	er static and qu	asi-stat	ic actic	n							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 τ : action bond stress for tension

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} &\cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} &\cdot \tau; \end{split}$$

Displacements under shear load²⁾ (rebar) Table C13:

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$
V: action shear load

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 10

for flooded bore hole

CAC

1,4

Tabl			eristic value ance catego			undei	r seis	mic a	ction				
Ancho	r size threac	ded rod				M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel f	ailure												
(Seism				N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}							
(Seism Steel, s Stainle	cteristic tension lic C2) strength class ss Steel A4 a th class ≥70	s 8.8	,	N _{Rk,s,eq,C2}	[kN]	N	PA	1,0 • N _{Rk,s}				NI	PA
Partial	factor			γ _{Ms,N}	[-]				see Ta	able C1			
	•		ncrete failure										
Charac	cteristic bond	resistan	ice in cracked a	nd non-cracke	d concrete (
<u>o</u>	L 0000/E00	<u></u>		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
rang	I: 80°C/50°		Dry, wet	τ _{Rk,eq,C2}	[N/mm²]	N	PA	3,6	3,5	3,3	2,3	NI	PA
nre	II: 120°C/72		concrete and	^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Temperature range	II. 120°C/72		flooded bore hole	^τ Rk,eq,C2	[N/mm²]	N	PA	3,1	3,0	2,8	2,0	NI	PA
	III: 160°C/1	00°C	11010	τ _{Rk,eq,C1}	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Ľ	III. 100 C/1	00 0		τ _{Rk,eq,C2}	[N/mm ²]	NPA		2,5 2,7 2,5 1,8				NPA	
Increas	sing factors fo	or concre	ete ψ _C	C25/30 to	C50/60	1,0							
Concr	ete cone fail	ure											
Non-cr	acked concre	ete		k _{ucr,N}	[-]				11	١,0			
Cracke	ed concrete			k _{cr,N}	[-]					,7			
Edge o	listance			c _{cr,N}	[mm]					h _{ef}			
Axial d	istance			s _{cr,N}	[mm]				2 c	cr,N			
Splittii	ng												
		h/h _{ef} ≥	2,0						1,0	h _{ef}			
Edge c	listance	2,0 > h	/h _{ef} > 1,3	c _{cr,sp}	[mm]			2 · h	ef $\left(2,\right)$,5 – <u> </u>	h ef		
		h/h _{ef} ≤	1,3	1					2,4	h _{ef}			
Axial d	Axial distance			s _{cr,sp}	[mm]					cr,sp			
Install	Installation factor			1 >-1-	<u>,</u>	I				7 - I-'			
for dry	or dry and wet concrete				1,0								
loi di y	or dry and wet concrete HDB		γinst	st [-]		1,2							

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1+C2)	Annex C 11

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm		'		•						
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]				0,70	o∙v ⁰ Rk	,s		
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2} [kN] NPA 0,70 • V ⁰ _{Rk,s} NPA								PA	
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	1		
Ductility factor k ₇ [-] 1,0										
Steel failure with lever arm										
	M ⁰ _{Rk,s,eq,C1}	[Nm]			No Pe	rforman	ce Asse	ssed (N	IPA)	
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]			No Pe	rforman	ce Asse	ssed (N	IPA)	
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure	·									
Effective length of fastener	I _f	[mm]	$\min(h_{ef}; 12 \cdot d_{nom}) \qquad \min(h_{ef}; 300 \text{mm})$							
Outside diameter of fastener	d _{nom}	[mm] 8 10 12 16 20 24						27	30	
Installation factor	γinst	[-]	1,0							
Factor for annular gap	$\alpha_{\sf gap}$	[-]				0,	5 (1,0) ¹⁾			

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1+C2)	Annex C 12

Tabl				alues of te stegory C		oads	und	er se	ismi	c act	ion					
Ancho	r size reinfo			itegory o	· <i>'</i>	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel fa	ailure						1									
Charac	teristic tens	ion resi	stance	N _{Rk,s,eq}	[kN]		$1.0 \cdot A_s \cdot f_{uk}^{1}$									
Cross	section area			A _s	[mm²]	50									804	
Partial	factor			γ _{Ms,N}	[-]	1,4 ²⁾										
Combi	ned pull-ou	it and c	oncrete fai	lure	•	_1										
Charac	teristic bond	d resista	ance in crac	ked and non-	-cracked co	ked concrete C20/25									,	
Dry, wet concrete				τ _{Rk,eq}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0	
Temperature range	II: 120°C/7	2°C	concrete and flooded	τ _{Rk,eq}	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0	
Ter	III: 160°C/1	100°C	bore hole	τ _{Rk,eq}	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0	
Increasing factors for concrete ψ_{C} C25/30 to C50/60				o C50/60		•		•	1	,0						
Concrete cone failure																
Non-cr	acked concr	ete		k _{ucr,N}	[-]	11,0										
Cracke	ed concrete			k _{cr,N}	[-]	7,7										
Edge d	listance			c _{cr,N}	[mm]	1,5 h _{ef}										
Axial d	istance			s _{cr,N}	[mm]					2 c	cr,N					
Splittir	ng			'	•											
		h/h _{ef} 2	≥ 2,0							1,0) h _{ef}					
Edge d	Edge distance $2.0 > h/h_{ef} > 1.3$		C _{cr,sp}	[mm]				2 · h	ef (2	,5 – -	$\frac{h}{\log n}$					
		h/h _{ef} s	≤ 1,3							2,4	l h _{ef}					
Axial d	istance	•		s _{cr,sp}	[mm]					2 c	cr,sp					
Installation factor						- 1										
for dry	and wet con	crete	CAC								,0					
	or dry and wet concrete HDB		γ _{inst}	Y _{inst} [-]		1,2										
for floo	for flooded bore hole CAC									1	,4					

¹⁾ f _{uk} shall be taken from the specifications of reinforcing bars	1) f _{uk}	shall be	taken t	from th	e specifi	ications	of	reinforcing	bars
--	--------------------	----------	---------	---------	-----------	----------	----	-------------	------

in absence of national regulation

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 13

Table C17: Characteristic values of shear loads under seismic action (performance category C1)													
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm			•	•			•						
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35	·As	· f _{uk} 1)				
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616 804								804		
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾										
Ductility factor	k ₇	[-]						1,0					
Steel failure with lever arm													
Characteristic bending moment $M^0_{Rk,s,eq}$ [Nm] No Performance Assessed (NPA)													
Concrete pry-out failure	·												
Factor	k ₈	[-]						2,0					
Installation factor	γinst	[-]						1,0					
Concrete edge failure	·	•											
Effective length of fastener	I _f	[mm]			min(h _e	_{ef} ; 12 ·	· d _{nom}	1)		min(h _{ef} ; 300	mm)	
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 32							32			
Installation factor	γinst	[-]						1,0					
Factor for annular gap	$lpha_{ extsf{gap}}$	[-]					0	,5 (1,0) ³⁾				

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 14

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C18: Display	Table C18: Displacements under tension load ¹⁾ (threaded rod)												
Anchor size threaded ro	od		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Cracked concrete C20/2	25 under seis	mic C1 action											
Temperature range I: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106			
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143			
	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412			
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424			

Table C19: Displacements under tension load¹⁾ (rebar)

Anchor size reinfo	Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Cracked concrete	C20/25 und	er seismic C1 ad	ction									
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

Table C20: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked and cracked concrete C20/25 under seismic C1 action											
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

Table C21: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C2	0/25 under se	eismic C1 actio	on									
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \text{V}; \ (\text{V: action shear load}) \end{split}$$

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under seismic C1 action (threaded rods and rebar)	Annex C 15

Table C22: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Cracked concrete C20/25 under seismic C2 action										
All temperature	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)]	N.I.	PA	0,120	0,100	0,100	0,120	NF	2.4
ranges	$\delta_{N,eq(ULS)}$ -factor	[mm/(N/mm ²)]	INI	PA	0,140	0,150	0,110	0,150	INF	A

¹⁾ Calculation of the displacement

 $\delta_{\text{N,eq(DLS)}} = \delta_{\text{N,eq(DLS)}} \text{-factor} \cdot \tau;$

 $\delta_{N,eq(ULS)} = \delta_{N,eq(ULS)} \text{-factor} \cdot \tau; \qquad \qquad (\tau: action bond stress for tension)$

Table C23: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Cracked concrete C20/25 under seismic C2 action				·	·	·	·	·	·	·
All temperature	$\delta_{V,eq(DLS)}$ -factor	[mm/kN]	NI	٦.۸	0,27	0,13	0,09	0,06	NE	٦,٨
ranges	$\delta_{V,ep(ULS)}$ -factor	[mm/kN]	ואו	A	0,27	0,14	0,10	0,08	INF	A

²⁾ Calculation of the displacement

 $\delta_{\text{V,eq(DLS)}} = \delta_{\text{V,eq(DLS)}}\text{-factor} \ \cdot \text{V};$

 $\delta_{V,eq(ULS)} = \delta_{V,eq(ULS)} \text{-factor } \cdot V; \qquad \text{(V: action shear load)}$

	Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete
ſ	Performances

Annex C 16

Displacements under seismic C2 action (threaded rods)